
wxmplot documentation
Release 0.9.12

Matthew Newville

April 02, 2013

CONTENTS

1 Prerequisites 3

2 Downloads 5

3 Development Version 7

4 Installation 9

5 License 11

6 PlotPanel: A wx.Panel for Basic 2D Line Plots 13
6.1 PlotPanel methods . 14
6.2 PlotFrame: a wx.Frame showing a PlotPanel . 17
6.3 PlotApp: a wx.App showing a PlotFrame . 17
6.4 Examples and Screenshots . 17

7 ImagePanel: A wx.Panel for Image Display 23
7.1 ImagePanel methods . 23
7.2 ImagePanel callback attributes . 24
7.3 ImageFrame: A wx.Frame for Image Display . 24
7.4 Image configuration with ImageConfig . 24
7.5 Examples and Screenshots . 25

Python Module Index 29

Index 31

i

ii

wxmplot documentation, Release 0.9.12

The wxmplot python package provides easy to use, richly featured plotting widgets for wxPython built on top of the
wonderful matplotlib library. While matplotlib provides excellent general purpose plotting functionality, and supports
a variety of GUI and non-GUI backends, it does not have a very tight integration with any particular GUI toolkit.
Similarly, while wxPython has some plotting functionality, it has nothing as good as matplotlib. The wxmplot package
attempts to bridge this gap, providing wx.Panels for basic 2D line plots and image display that are richly featured
and provide end-users with interactivity and customization of the graphics without having to know matplotlib. While
wxmplot does not expose all of matplotlib’s capabilities, but does provide widgets, the plotting and imaging Panels
and Frames can be used simply in wxPython applications to handle many use cases.

The wxmplot package is aimed at programmers who want high quality scientific graphics for their applications that
can be manipulated by the end-user. If you’re a python programmer who is comfortable writing matplotlib / pylab
scripts or plotting interactively from IPython, this package may seem too limiting for your needs.

CONTENTS 1

http://www.wxpython.org/
http://matplotlib.sourceforge.net/

wxmplot documentation, Release 0.9.12

2 CONTENTS

CHAPTER

ONE

PREREQUISITES

The wxmplot package requires Python, wxPython, numpy, and matplotlib. Some of the example applications rely on
the Image module as well.

As of this writing (April, 2013), wxPython has been demonstrated to run on Python 3, but no testing of wxmplot has
been done with Python 3.

3

wxmplot documentation, Release 0.9.12

4 Chapter 1. Prerequisites

CHAPTER

TWO

DOWNLOADS

The latest version is available from PyPI or CARS (Univ of Chicago):

Download Option Python Versions Location
Source Kit 2.6, 2.7

• wxmplot-0.9.12.tar.gz (CARS)
• wxmplot-0.9.12.zip (CARS)
• wxmplot-0.9.12.tar.gz (PyPI)
• wxmplot-0.9.12.zip (PyPI)

Windows Installers 2.6 2.7
• wxmplot-0.9.12.win32-

py2.6.exe
• wxmplot-0.9.12.win32-

py2.7.exe

Development Version all use wxmplot github repository

if you have Python Setup Tools installed, you can download and install the package simply with:

easy_install -U wxmplot

5

http://cars9.uchicago.edu/software/python/wxmplot/src/wxmplot-0.9.12.tar.gz
http://cars9.uchicago.edu/software/python/wxmplot/src/wxmplot-0.9.12.zip
http://pypi.python.org/packages/source/w/wxmplot/wxmplot-0.9.12.tar.gz
http://pypi.python.org/packages/source/w/wxmplot/wxmplot-0.9.12.zip
https://pypi.python.org/packages/2.6/w/wxmplot/wxmplot-0.9.12.win32-py2.6.exe
https://pypi.python.org/packages/2.6/w/wxmplot/wxmplot-0.9.12.win32-py2.6.exe
https://pypi.python.org/packages/2.7/w/wxmplot/wxmplot-0.9.12.win32-py2.7.exe
https://pypi.python.org/packages/2.7/w/wxmplot/wxmplot-0.9.12.win32-py2.7.exe
http://github.com/newville/wxmplot
http://pypi.python.org/pypi/setuptools

wxmplot documentation, Release 0.9.12

6 Chapter 2. Downloads

CHAPTER

THREE

DEVELOPMENT VERSION

To get the latest development version, use:

git clone http://github.com/newville/wxmplot.git

7

wxmplot documentation, Release 0.9.12

8 Chapter 3. Development Version

CHAPTER

FOUR

INSTALLATION

wxmplot is a pure python module, so installation on all platforms can use the source kit:

tar xvzf wxmplot-0.9.12.tar.gz or unzip wxmplot-0.9.12.zip
cd wxmplot-0.9.12/
python setup.py install

or, again using easy_install -U wxmplot.

9

wxmplot documentation, Release 0.9.12

10 Chapter 4. Installation

CHAPTER

FIVE

LICENSE

The wxmplot code is distribution under the following license:

Copyright (c) 2012 Matthew Newville, The University of Chicago

Permission to use and redistribute the source code or binary forms of this software and its documentation,
with or without modification is hereby granted provided that the above notice of copyright, these terms
of use, and the disclaimer of warranty below appear in the source code and documentation, and that none
of the names of The University of Chicago or the authors appear in advertising or endorsement of works
derived from this software without specific prior written permission from all parties.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THIS SOFTWARE.

11

wxmplot documentation, Release 0.9.12

12 Chapter 5. License

CHAPTER

SIX

PLOTPANEL: A WX.PANEL FOR BASIC
2D LINE PLOTS

The PlotPanel class supports standard 2 dimensional plots, including line plots and scatter plots. It has both an
easy-to-use programming interface, and a rich graphical user interface for manipulating the plot after it has been drawn.
The PlotPanel class is derived from a wx.Panel and so that it can be included anywhere in a wx Windo object
that a normal wx.Panel can be. In addition to drawing a plot, a PlotPanel provides the following capabilities to
the end-user:

1. display x, y coordinates as the mouse move.

2. display x, y coordinates of last left-click.

3. zoom in on a particular region of the plot with left-drag in a lineplot, or draw an ‘lasso’ around selected points
in a scatterplot.

4. customize titles, labels, legend, colors, linestyles, markers, and whether a grid and a legend is shown. A separate
configuration window is used to give control of these settings.

5. save high-quality plot images (as PNGs), or copy to system clipboard, or print.

In addition, there is a PlotFrame widget which creates a stand-alone wx.Frame that contains a PlotPanel, a
wx.StatusBar, and a wx.MenuBar. Both PlotPanel and PlotFrame classes have the basic plotting methods
of plot() to make a new plot with a single trace, and oplot() to overplot another trace on top of an existing plot.
These each take 2 equal-length numpy arrays (abscissa, ordinate) for each trace, and a host of optional arguments. The
PlotPanel and PlotFrame have many additional methods to interact with the plots.

class plotpanel.PlotPanel(parent, size=(6.0, 3.7), dpi=96, messenger=None,
show_config_popup=True, **kws)

Create a Plot Panel, a wx.Panel

Parameters

• parent – wx parent object.

• size – figure size in inches.

• dpi – dots per inch for figure.

• messenger (callable or None) – function for accepting output messages.

• show_config_popup (True/False) – whether to enable a popup-menu on right-click.

The size, and dpi arguments are sent to matplotlib’s Figure. The messenger should should be a func-
tion that accepts text messages from the panel for informational display. The default value is to use
sys.stdout.write().

13

wxmplot documentation, Release 0.9.12

The show_config_popup arguments controls whether to bind right-click to showing a poup menu with options
to zoom in or out, configure the plot, or save the image to a file.

Extra keyword parameters in **kws are sent to the wx.Panel.

6.1 PlotPanel methods

plotpanel.plot(x, y, **kws)
Draw a plot of the numpy arrays x and y, erasing any existing plot. The displayed curve for these data is called
a trace. The plot() method has many optional parameters, all using keyword/value argument. Since most of
these are shared with the oplot() method, the full set of parameters is given in Table of Plot Arguments

plotpanel.oplot(x, y, **kws)
Draw a plot of the numpy arrays x and y, overwriting any existing plot.

The oplot() method has many optional parameters, as listed in Table of Plot Arguments

Table of Plot Arguments These arguments apply for the plot(), oplot(), and scatterplot() methods.
Except where noted, the arguments are available for plot() and oplot(). In addition, the scatterplot()
method uses many of the same arguments for the same meaning, as indicated by the right-most column.

argument type default meaning scatterplot?
title string None Plot title yes
ylabel string None abscissa label yes
y2label string None right-hand abscissa label yes
label string None trace label (defaults to ‘trace N’) yes
side left/right left side for y-axis and label yes
grid None/bool None to show grid lines yes
color string blue color to use for trace yes
use_dates bool False to show dates in xlabel (plot() only) no
linewidth int 2 linewidth for trace no
style string solid line-style for trace (solid, dashed, ...) no
drawstyle string line style connecting points of trace no
marker string None symbol to show for each point (+, o,) no
markersize int 8 size of marker shown for each point no
dy array None uncertainties for y values; error bars no
ylog_scale bool False draw y axis with log(base 10) scale no
xmin float None minimum displayed x value yes
xmax float None maximum displayed x value yes
ymin float None minimum displayed y value yes
ymax float None maximum displayed y value yes
autoscale bool True whether to automatically set plot limits no
draw_legend None/bool None whether to display legend (None: leave as is) no
refresh bool True whether to refresh display no

arguments that apply only for scatterplot()
size int 10 size of marker yes
edgecolor string black edge color of marker yes
selectcolor string red color for selected points yes
callback function None user-supplied callback to run on selection yes

As a general note, the configuration for the plot (title, labels, grid displays) and for each trace (color,
linewidth, ...) are preserved for a PlotPanel. A few specific notes:

1. The title, label, and grid arguments to plot() default to None, which means to use the
previously used value.

14 Chapter 6. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.12

2. The use_dates option is not very rich, and simply turns x-values that are Unix timestamps
into x labels showing the dates.

3. While the default is to auto-scale the plot from the data ranges, specifying any of the limits
will override the corresponding limit(s).

4. The color argument can be any color name (“blue”, “red”, “black”, etc), standard X11 color
names (“cadetblue3”, “darkgreen”, etc), or an RGB hex color string of the form “#RRGGBB”.

5. Valid style arguments are ‘solid’, ‘dashed’, ‘dotted’, or ‘dash-dot’, with ‘solid’ as the default.

6. Valid marker arguments are ‘+’, ‘o’, ‘x’, ‘^’, ‘v’, ‘>’, ‘<’, ‘|’, ‘_’, ‘square’, ‘diamond’, ‘thin
diamond’, ‘hexagon’, ‘pentagon’, ‘tripod 1’, or ‘tripod 2’.

7. Valid drawstyles are None (which connects points with a straight line), ‘steps-pre’, ‘steps-
mid’, or ‘steps-post’, which give a step between the points, either just after a point (‘steps-
pre’), midway between them (‘steps-mid’) or just before each point (‘steps-post’). Note that if
displaying discrete values as a function of time, left-to-right, and want to show a transition to
a new value as a sudden step, you want ‘steps-post’.

All of these values, and a few more settings controlling whether and how to display a plot legend can be
configured interactively (see Plot Configuration).

plotpanel.update_trace(trace, x, y[, side=’left’])
update an existing trace.

Parameters

• trace – integer index for the trace (0 is the first trace)

• x – array of x values

• y – array of y values

• side – which y axis to use (‘left’ or ‘right’).

This function is particularly useful for data that is changing and you wish to update traces from a previous
plot() or oplot() with the new (x, y) data without completely redrawing the entire plot. Using this method
is substantially faster than replotting, and should be used for dynamic plots such as a StripChart.

plotpanel.scatterplot(x, y, **kws)
draws a 2d scatterplot. This is a collection of points that are not meant to imply a specific order that can be
connected by a continuous line. A full list of arguments are listed in Table of Plot Arguments.

plotpanel.clear()
Clear the plot.

plotpanel.add_text(text, x, y, side=’left’, rotation=None, ha=’left’, va=’center’, **kws)
add text to the plot.

Parameters

• text – text to write

• x – x coordinate for text

• y – y coordinate for text

• side – which axis to use (‘left’ or ‘right’) for coordinates.

• rotation – text rotation: angle in degrees or ‘vertical’ or ‘horizontal’

• ha – horizontal alignment (‘left’, ‘center’, ‘right’)

• va – vertical alignment (‘top’, ‘center’, ‘bottom’, ‘baseline’)

6.1. PlotPanel methods 15

wxmplot documentation, Release 0.9.12

plotpanel.add_arrow(x1, y1, x2, y2, side=’left’, shape=’full’, fg=’black’, wdith=0.01, head_width=0.1,
overhang=0)

draw arrow from (x1, y1) to (x2, y2).

Parameters

• x1 – starting x coordinate

• y1 – starting y coordinate

• x2 – endnig x coordinate

• y2 – ending y coordinate

• side – which axis to use (‘left’ or ‘right’) for coordinates.

• shape – arrow head shape (‘full’, ‘left’, ‘right’)

• fg – arrow fill color (‘black’)

• width – width of arrow line (in points. default=0.01)

• head_width – width of arrow head (in points. default=0.1)

• overhang – amount the arrow is swept back (in points. default=0)

plotpanel.set_xylims(limits[, axes=None[, side=None[, autoscale=True]]])
Set the x and y limits for a plot based on a 2x2 list.

Parameters

• limits (a 4-element list: [xmin, xmax, ymin, ymax]) – x and y limits

• axes – instance of matplotlib axes to use (i.e, for right or left side y axes)

• side – set to ‘right’ to get right-hand axes.

• autoscale – whether to automatically scale to data range.

That is, if autoscale=False is passed in, then the limits are used.

plotpanel.get_xylims()
return current x, y limits.

plotpanel.unzoom()
unzoom the plot. The x, y limits for interactive zooms are stored, and this function unzooms one level.

plotpanel.unzoom_all()
unzoom the plot to the full data range.

plotpanel.set_title(title)
set the plot title.

plotpanel.set_xlabel(label)
set the label for the ordinate axis.

plotpanel.set_ylabel(label)
set the label for the left-hand abscissa axis.

plotpanel.set_y2label(label)
set the label for the right-hand abscissa axis.

plotpanel.set_bgcol(color)
set the background color for the PlotPanel.

plotpanel.write_message(message)
write a message to the messenger. For a PlotPanel embedded in a PlotFrame, this will go the the Status
Bar.

16 Chapter 6. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.12

plotpanel.save_figure()
shows a File Dialog to save a PNG image of the current plot.

plotpanel.configure()
show plot configuration window for customizing plot.

plotpanel.reset_config()
reset the configuration to default settings.

6.2 PlotFrame: a wx.Frame showing a PlotPanel

As mentioned above, a PlotFrame is a wx.Frame – a separate plot window – that contains a PlotPanel and
is decorated with a status bar and menubar with menu items for saving, printing and configuring plots. It inherits
many of the methods of a PlotPanel, and simply passes the arguments along to the corresponding methods of the
PlotPanel.

class plotframe.PlotFrame(parent[, size=(700, 450)[, title=None[, **kws]]])
create a plot frame. This frame will have a panel member holding the underlying PlotPanel, and have
menus and statusbar for plot interaction.

plotframe.plot(x, y, **kws)
Passed to panel.plot

plotframe.oplot(x, y, **kws)
Passed to panel.oplot

plotframe.scatterplot(x, y, **kws)
Passed to panel.scatterplot

plotframe.clear()
Passed to panel.clear

plotframe.update_trace(x, y, **kws)
Passed to panel.update_trace

plotframe.reset_config(x, y, **kws)
Passed to panel.reset_config

6.3 PlotApp: a wx.App showing a PlotFrame

A PlotApp is a wx.App – an application – that consists of a PlotFrame. This show a frame that is decorated with
a status bar and menubar with menu items for saving, printing and configuring plots.

class plotapp.PlotApp
create a plot application. This has methods plot(), oplot(), and write_message(), which are sent to
the underlying PlotPanel. This allows very simple scripts which give plot interactivity and customization.

6.4 Examples and Screenshots

Here, a few examples and screenshots of the output of those examples are shown.

6.2. PlotFrame: a wx.Frame showing a PlotPanel 17

wxmplot documentation, Release 0.9.12

6.4.1 Basic Example

A basic plot can be made using a PlotApp and a simple script like this:

#!/usr/bin/env python
simple wxmplot example

from numpy import linspace, sin, cos, random
from wxmplot import PlotApp

app = PlotApp()

x = linspace(0.0, 10.0, 101)
y = 5*sin(4*x)/(x+6)
z = cos(0.7*(x+0.3)) + random.normal(size=len(x), scale=0.2)

app.plot(x, y, title=’WXMPlot Demo’, label=’decaying sine’,
ylabel=r’$\chi(x)$’, xlabel=’$x \ (\AA)$’)

app.oplot(x, z, label=’noisy cosine’, marker=’+’)

app.write_message(’Try Help->Quick Reference’)
app.run()

This gives a window with a plot that looks like this:

The configuration window (Options->Configuration or Ctrl-K) for this plot looks like this:

18 Chapter 6. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.12

where all the options and fields show will dynamically change the plot shown in the PlotPanel.

6.4.2 Scatterplot Example

An example scatterplot can be produced with a script like this:

#!/usr/bin/python
#
scatterplot example, with lassoing and
a user-level lasso-callback
import sys
if not hasattr(sys, ’frozen’):

import wxversion
wxversion.ensureMinimal(’2.8’)

import wxmplot

import wx
import numpy

x = numpy.arange(100)/20.0 + numpy.random.random(size=100)
y = numpy.random.random(size=len(x))
def onlasso(data=None, selected=None, mask=None):

print ’:: lasso ’, selected

app = wx.App()

pframe = wxmplot.PlotFrame()
pframe.scatterplot(x, y, title=’Scatter Plot’, size=15,

xlabel=’$ x\, \mathrm{(\AA)}$’,
ylabel=’$ y\, \mathrm{(\AA^{-1})}$’)

pframe.panel.lasso_callback = onlasso
pframe.write_message(’WXMPlot PlotFrame example: Try Help->Quick Reference’)
pframe.Show()

6.4. Examples and Screenshots 19

wxmplot documentation, Release 0.9.12

#
app.MainLoop()

and gives a plot (after having selected by “lasso”ing) that looks like this:

6.4.3 Using Left and Right Axes

An example using both right and left axes with different scales can be created with:

#!/usr/bin/python
#
example plot with left and right axes with different scales

import sys
if not hasattr(sys, ’frozen’):

import wxversion
wxversion.ensureMinimal(’2.8’)

import wx
import numpy as np
import wxmplot

noise = np.random.normal
n = 201
x = np.linspace(0, 100, n)
y1 = np.sin(x/3.4)/(0.2*x+2) + noise(size=n, scale=0.1)
y2 = 92 + 65*np.cos(x/16.) * np.exp(-x*x/7e3) + noise(size=n, scale=0.3)

app = wx.App()
pframe = wxmplot.PlotFrame()

20 Chapter 6. PlotPanel: A wx.Panel for Basic 2D Line Plots

wxmplot documentation, Release 0.9.12

pframe.plot(x, y1, title=’Test 2 Axes with different y scales’,
xlabel=’x (mm)’, ylabel=’y1’, ymin=-0.75, ymax=0.75)

pframe.oplot(x, y2, y2label=’y2’, side=’right’, ymin=0)
pframe.Show()
app.MainLoop()

and gives a plot that looks like this:

6.4.4 More Examples

These and several other examples are given in the examples directory in the source distribution kit. The demo.py
script there will show several 2D Plot panel examples, including a plot which uses a timer to simulate a dynamic plot,
updating the plot as fast as it can - typically 10 to 30 times per second, depending on your machine. The stripchart.py
example script also shows a dynamic, time-based plot.

6.4. Examples and Screenshots 21

wxmplot documentation, Release 0.9.12

22 Chapter 6. PlotPanel: A wx.Panel for Basic 2D Line Plots

CHAPTER

SEVEN

IMAGEPANEL: A WX.PANEL FOR IMAGE
DISPLAY

The ImagePanel class supports image display, including gray-scale and false-color maps or contour plots for 2-D
arrays of intensity. ImagePanel is derived from a wx.Panel and so can be easily included in a wx GUI.

While the image can be customized programmatically, the only interactivity built in to the ImagePanel itself is
the ability to zoom in and out. In contrast, an ImageFrame provides many more ways to manipulate the displayed
image, as will be discussed below.

class imagepanel.ImagePanel(parent, size=(4.5, 4.0), dpi=100, messenger=None, **kws)
Create an Image Panel, a wx.Panel

Parameters

• parent – wx parent object.

• size – figure size in inches.

• dpi – dots per inch for figure.

• messenger (callable or None) – function for accepting output messages.

The size, and dpi arguments are sent to matplotlib’s Figure. The messenger should should be a func-
tion that accepts text messages from the panel for informational display. The default value is to use
sys.stdout.write().

Extra keyword parameters are sent to the wx.Panel.

The configuration settings for an image (its colormap, smoothing, orientation, and so on) are controlled through
configuration attributes.

7.1 ImagePanel methods

imagepanel.display(data, x=None, y=None, style=’image’, **kws)
display a new image from the 2-D numpy array data. If provided, the x and y values will be used as coordinates
for the pixels for display purposes.

imagepanel.clear()
clear the image

imagepanel.redraw()
redraw the image, as when the configuration attributes have been changed.

23

wxmplot documentation, Release 0.9.12

7.2 ImagePanel callback attributes

An ImagePanel instance has several callback attributes that can be used to get information from the image panel.

imagepanel.data_callback
A function that is called with the data and x and y values each time display() is called.

imagepanel.lasso_callback
A function that is called with the data and selected points when the cursor is in lasso mode and a new set of
points has been selected.

imagepanel.cursor_callback
A function that is called with the x and y position clicked on each left-button event.

imagepanel.contour_callback
A function that is called with the contour levels each time display() is called with style=’contour’.

7.3 ImageFrame: A wx.Frame for Image Display

In addition to providing a top-level window frame holding an ImagePanel, an ImageFrame provides the end-user
with many ways to manipulate the image:

1. display x, y, intensity coordinates (left-click)

2. zoom in on a particular region of the plot (left-drag).

3. change color maps.

4. flip and rotate image.

5. select optional smoothing interpolation.

6. modify intensity scales.

7. save high-quality plot images (as PNGs), copy to system clipboard, or print.

These options are all available programmatically as well, by setting the configuration attributes and redrawing the
image.

class imageframe.ImageFrame(parent, size=(550, 450), **kws)
Create an Image Frame, a wx.Frame. This is a Frame with an ImagePanel and several menus and controls
for changing the color table and smoothing options as well as switching the display style between “image” and
“contour”.

7.4 Image configuration with ImageConfig

To change any of the attributes of the image on an ImagePanel, you can set the corresponding attribute of the
panel’s conf. That is, if you create an ImagePanel, you can set the colormap with:

import matplotlib.cm as cmap
im_panel = ImagePanel(parent)
im_panel.display(data_array)

now change colormap:
im_panel.conf.cmap = cmap.cool
im_panel.redraw()

24 Chapter 7. ImagePanel: A wx.Panel for Image Display

wxmplot documentation, Release 0.9.12

now rotate the image by 90 degrees (clockwise):
im_panel.conf.rot = True
im_panel.redraw()

now flip the image (top/bottom), apply log-scaling,
and apply gaussian interpolation
im_panel.conf.flip_ud = True
im_panel.conf.log_scale = True
im_panel.conf.interp = ’gaussian’
im_panel.redraw()

For a ImageFrame, you can access this attribute as frame.panel.conf.cmap.

The list of configuration attributes and their meaning are given in the Table of Image Configuration attributes Table
of Image Configuration attributes: All of these are members of the panel.conf object, as shown in the example above.

attribute type default meaning
rot bool False rotate image 90 degrees clockwise
flip_ud bool False flip image top/bottom
flip_lr bool False flip image left/right
log_scale bool False display log(image)
auto_intensity bool True auto-scale the intensity
cmap colormap gray colormap for intensity scale
cmap_reverse bool False reverse colormap
interp string nearest interpolation, smoothing algorithm
xylims list None xmin, xmax, ymin, ymax for display
cmap_lo int 0 low intensity percent for colormap mapping
cmap_hi int 100 high intensity percent for colormap mapping
int_lo float None low intensity when autoscaling is off
int_hi float None high intensity when autoscaling is off
style string ‘image’ ‘image’ or ‘contour’
ncontour_levels int 10 number of contour levels
contour_levels list None list of contour levels
contour_labels list None list of contour labels

Some notes:

1. cmap is an instance of a matplotlib colormap.

2. cmap_lo and cmap_hi set the low and high values for the sliders that compress the colormap, and are on a scale
from 0 to 100.

3. In contrast, int_lo and int_hi set the map intensity values that are used when auto_intensity is False. These
can be used to put two different maps on the same intensity intensity scale.

7.5 Examples and Screenshots

A basic plot from a ImageFrame looks like this:

7.5. Examples and Screenshots 25

wxmplot documentation, Release 0.9.12

This screenshot shows a long list of choices for color table, a checkbox to reverse the color table, sliders to adjust the
upper and lower level, a checkbox to auto-scale the intensity, or entries to set the intensity values for minimum and
maximum intensity. In addition, one can toggle to a ‘contour style’ plot, in which the levels are made discrete with
many fewer levels than the continuous image display. A contour plot would look like this:

26 Chapter 7. ImagePanel: A wx.Panel for Image Display

wxmplot documentation, Release 0.9.12

For either display style, clicking on the image will show its coordinates and intensity value. Click-and-Drag will select
a rectangular box to zoom in on a particular feature of the image.

The File menu includes options to save an PNG file of the image (Ctrl-S), copy the image to the system clipboard (Ctrl-
C), print (Ctrl-P) or print-preview the image, or quit the application. The Options menu includes Zoom Out (Ctrl-Z),
applying a log-scale to the intensity (Ctrl-L), rotating the image clockwise (Ctrl-R), flipping the image top/bottom
(Ctrl-T) or right/left (Ctrl-F) (note that flipping does not work for contour-style plots) or saving an image of the
colormap. The Smoothing menu allows you choose from one of several interpolation algorithms.

7.5. Examples and Screenshots 27

wxmplot documentation, Release 0.9.12

28 Chapter 7. ImagePanel: A wx.Panel for Image Display

PYTHON MODULE INDEX

i
imageframe, 24
imagepanel, 23

p
plotapp, 17
plotframe, 17
plotpanel, 13

29

wxmplot documentation, Release 0.9.12

30 Python Module Index

INDEX

A
add_arrow() (in module plotpanel), 15
add_text() (in module plotpanel), 15

C
clear() (in module imagepanel), 23
clear() (in module plotframe), 17
clear() (in module plotpanel), 15
configure() (in module plotpanel), 17
contour_callback (in module imagepanel), 24
cursor_callback (in module imagepanel), 24

D
data_callback (in module imagepanel), 24
display() (in module imagepanel), 23

G
get_xylims() (in module plotpanel), 16

I
ImageFrame (class in imageframe), 24
imageframe (module), 24
ImagePanel (class in imagepanel), 23
imagepanel (module), 23

L
lasso_callback (in module imagepanel), 24

O
oplot() (in module plotframe), 17
oplot() (in module plotpanel), 14

P
plot() (in module plotframe), 17
plot() (in module plotpanel), 14
PlotApp (class in plotapp), 17
plotapp (module), 17
PlotFrame (class in plotframe), 17
plotframe (module), 17
PlotPanel (class in plotpanel), 13

plotpanel (module), 13

R
redraw() (in module imagepanel), 23
reset_config() (in module plotframe), 17
reset_config() (in module plotpanel), 17

S
save_figure() (in module plotpanel), 16
scatterplot() (in module plotframe), 17
scatterplot() (in module plotpanel), 15
set_bgcol() (in module plotpanel), 16
set_title() (in module plotpanel), 16
set_xlabel() (in module plotpanel), 16
set_xylims() (in module plotpanel), 16
set_y2label() (in module plotpanel), 16
set_ylabel() (in module plotpanel), 16

U
unzoom() (in module plotpanel), 16
unzoom_all() (in module plotpanel), 16
update_trace() (in module plotframe), 17
update_trace() (in module plotpanel), 15

W
write_message() (in module plotpanel), 16

31

	Prerequisites
	Downloads
	Development Version
	Installation
	License
	PlotPanel: A wx.Panel for Basic 2D Line Plots
	PlotPanel methods
	PlotFrame: a wx.Frame showing a PlotPanel
	PlotApp: a wx.App showing a PlotFrame
	Examples and Screenshots

	ImagePanel: A wx.Panel for Image Display
	ImagePanel methods
	ImagePanel callback attributes
	ImageFrame: A wx.Frame for Image Display
	Image configuration with ImageConfig
	Examples and Screenshots

	Python Module Index
	Index

